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(57) ABSTRACT

Embodiments of a system and method for indexing of geospa-
tial data using three-dimensional Cartesian space are gener-
ally described herein. In an aspect, such example methods
may include calculating endpoints of a segment, wherein the
endpoints are specified in Cartesian coordinates and are
located on a substantially spherical surface, defining a bound-
ary of a polygon according to the segment, computing one or
more normals corresponding to one or more planes, wherein
each of the one or more planes contain a test point and a
boundary point associated with the boundary, obtaining a
boundary sine value of an angle defined by an arc subtended
by the endpoints, summing each of a group of angle values
derived from the boundary sine value to obtain an angle sum,
wherein the group contains the boundary sine value, and
determining whether the test point is inside the polygon based
on the angle sum.

17 Claims, 4 Drawing Sheets
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1
SYSTEM AND METHOD FOR INDEXING OF
GEOSPATIAL DATA USING
THREE-DIMENSIONAL CARTESIAN SPACE

CLAIM OF PRIORITY 35 U.S.C. §119

The present non-provisional utility patent application
hereby claims priority under 35 U.S.C. §119 to U.S. Provi-
sional Application No. 61/608,991, entitled “System and
Method for Indexing of Geospatial Data Using Three-Dimen-
sional Cartesian Space” and filed on Mar. 9, 2012.

GOVERNMENT RIGHTS

This invention was made with Government support under
Contract Number 09-C-4135 awarded by Department of
Defense. The Government has certain rights in this invention.

TECHNICAL FIELD

Embodiments pertain to indexing of geospatial data using
three-dimensional Cartesian space.

BACKGROUND

Some conventional databases include geospatial search
support based on a two-dimensional model based on latitudes
and longitudes. Consequentially, such models exhibit
degraded geospatial accuracy at the North and South Poles
and at the 180-degree East/West meridian lines. Thus, meth-
ods and apparatuses for geospatial search and indexing are
needed that help obviate accuracy degradation at certain areas
of the Earth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram illustrating a system for
improved geospatial search, according to an example
embodiment;

FIG. 2 is a block diagram illustrating an example geospa-
tial search engine, according to an example embodiment;

FIG. 3 is a flowchart illustrating a method for improved
geospatial search, according to an example embodiment;

FIG. 4 is a block diagram illustrating a machine in the
example form of a computer system, within which a set or
sequence of instructions for causing the machine to perform
any one of the methodologies discussed herein may be
executed, according to an example embodiment.

DETAILED DESCRIPTION

The following description sufficiently illustrates specific
embodiments to enable those skilled in the art to practice
them. Other embodiments may incorporate structural, logi-
cal, electrical, process, and other changes. Portions and fea-
tures of some embodiments may be included in, or substituted
for, those of other embodiments. Embodiments set forth in the
claims encompass all available equivalents of those claims.

In accordance with embodiments, the system and method
disclosed herein indexes data geospatially by use of a space-
filling curve with boundaries and boundary intersections cal-
culated in three-dimensional Cartesian space so that the
North and South poles and 180-degree East/West meridian
are non-issues.

Some embodiments employ a modification of the open-
source GeoHash indexing concept. One key part is how poly-
gons and areas of the sphere are bounded in three-dimen-
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sional space. This may be done by calculating the endpoints
of polygon bounding segments as points on the spherical
surface and then using the chord through the sphere as the
boundary (instead of Great Arcs). Intersections are found as
closest-approaches with linear-algebraic calculations finding
the distances along the boundary segments of the closest-
approach points and the distance of the closest approach
along a third orthogonal direction.

In some embodiments, an innovative algorithm may be
used to determine if a test point is inside or outside of a
polygon. The algorithm may use cross-products to define the
normal to planes containing the test point and each point of
the boundary. The algorithm may then use cross-products of
these normals to find the sine of the arc subtended by the
boundary segments. Finally, from the sine of the arc it derives
the angles subtended by the boundary segments to determine
whether or not the test point is inside or outside the polygon.

Some embodiments use Cartesian coordinates, straight-
line spherical-chord boundaries, and linear algebra to find
Great Arc boundary intersections rather than the direct Great
Arcs and spherical trigonometry to find the intersections. As
a consequence of this approach, coordinate system special
points such as the North and South Poles and the 180-degree
East/West line become like every other point on the spherical
surface.

In some embodiments, a geospatial search approach is
provided that supports geospatial search with polygon
bounds. By switching to three-dimensional coordinates, the
poles and the 180-degree East/West meridian become non-
issues. In accordance with embodiments, a geospatial search
capability is provided that has the ability to search for docu-
ments within a geospatial polygon, and provides a solution
that would not require special handling at any point on the
Earth specifically including the poles and the 180-degree
East/West longitude meridian. Some embodiments may inter-
nally map latitude/longitude points onto a spherical Earth and
then operates in three-dimensional Cartesian space. Using the
geohash algorithm modified to produce Long indices (or, in
some examples, integer indices, which in some programming
languages, may have unlimited size) the approximate loca-
tions of points are indexed as numeric values. This approach
helps enable index lookup using Trie structures with numeric
range queries. Polygons may be enabled by making the index
field multi-valued.

In some embodiments, after the index lookup, the results
may be filtered with the query polygon, although the scope of
the embodiments is not limited in this respect. These embodi-
ments enable the use of coarser index lookups to reduce the
number of Boolean clauses required. The document geometry
information may be stored to enable this filtering. In some
other embodiments, core mathematics discussed herein may
be used in the indexing and querying processes described.

Turning to the figures, FIG. 1 represents an example sys-
tem 100 for geospatial search based on three-dimensional
Cartesian coordinate indexing of points on a substantially
spherical body, such as, but not limited to, the Earth. In an
aspect, system 100 may include a computer device 102,
which may be configured to communicate with a geospatial
search database 104 via a communication link 108. In some
examples, a user may input a search query into computer
device 102 via an input method (e.g., a keyboard, not shown).
Computer device 102 may format the query for communica-
tion to geospatial search database 104 and may transmit this
formatted query to geospatial search database 104. In a fur-
ther aspect, geospatial search database 104 may include a
geospatial search engine 106, which may be configured to
receive one or more queries and/or execute one or more
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algorithms to perform a search based on the query using
mathematical algorithms defined herein, which may be based
upon three-dimensional modeling of a surface, such as, but
not limited to, the surface of the earth. Furthermore, geo
spatial search engine 106 and/or geospatial search database
104 may be configured to generate and transmit a query
response to computer device 102 via communication link
108.

In an aspect, one or both of computer device 102 and geo
spatial search database 104 may be a stationary computer
device, such as, but not limited to a desktop computer, server,
server rack, supercomputer, a group thereof, or the like. Fur-
ther, may be a mobile device, such as, but not limited to, a
smartphone, cellular telephone, mobile phone, laptop com-
puter, tablet computer, or other portable networked device. In
addition, one or both of computer device 102 and geo spatial
search database 104 may also be a mobile device, which may
be referred to by those skilled in the art as a mobile station, a
subscriber station, a mobile unit, a subscriber unit, a wireless
unit, a remote unit, a mobile device, a wireless device, a
wireless communications device, a remote device, a mobile
subscriber station, an access terminal, a mobile terminal, a
wireless terminal, a remote terminal, a handset, a terminal, a
user agent, a mobile client, a client, or some other suitable
terminology. In general, one or both of computer device 102
and geo spatial search database 104 may be small and light
enough to be considered portable and may be configured to
communicate wirelessly via an over-the-air communication
link using one or more OTA communication protocols
described herein.

Furthermore, communication link 108 (or one or both of
computer device 102 and geospatial search database 104)
may include one or more of any type of network module, such
as an access point, a macro cell, including a base station (BS),
node B, eNodeB (eNB), a relay, a peer-to-peer device, an
authentication, authorization and accounting (AAA) server, a
mobile switching center (MSC), a radio network controller
(RNC), or a low-power access point, such as a picocell, fem-
tocell, microcell, etc.

Furthermore, in an additional aspect, both of computer
device 102 and geospatial search database 104 may be com-
ponents of a single device (e.g. a unitary computing device).
In such an aspect, communications link 108 may be internal
to such a unitary computing device and may therefore com-
prise, for example, a bus or other information-carrying con-
ductor on an integrated circuit or between components of the
unitary computing device.

In addition, FIG. 2 presents an example geospatial search
engine 104, which, as indicated in FIG. 1, may be configured
to perform mathematical algorithms to effect three-dimen-
sional Cartesian-based geospatial searching based on one or
more queries. Geospatial search module 202 may include an
endpoint calculating module 204, which may be configured to
calculate endpoints of a segment. In an aspect, this segment
may be specified in Cartesian coordinates and are located on
a substantially spherical surface, and may be based on an
input from a user and/or a surface polygon defined by the
input or other search instructions.

Furthermore, computation module 202 may include a
boundary defining module configured to define a boundary of
a polygon according to the segment. Additionally, computa-
tion module 202 may include a normal computing module
configured to compute one or more normals corresponding to
one or more planes. In some examples, each of the one or
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more planes contain a test point and a boundary point asso-
ciated with the boundary. In an additional aspect, computa-
tion module 202 may include a sine obtaining module con-
figured to obtain a boundary sine value of an angle defined by
an arc subtended by the endpoints and/or a summing module
configured to sum each of a group of angle values derived
from the boundary sine value to obtain an angle sum. In some
examples, such a group of angle values derived from the
boundary sine value may contain the boundary sine value.

Additionally, computation module 202 may include aloca-
tion determining module configured to determine whether the
test point is inside the polygon. In an aspect, such a determi-
nation may be based on the angle sum. Furthermore, compu-
tation module may include an algorithm modifying module
configured to modify a geohash algorithm to produce at least
one long integer value associated with one or more points
located on the surface.

Furthermore, computation module may include one or
more modules that may interface and communicate with a
storage module 222, which may be a repository of geospatial
values and/or associated data that may be read from, written
to, and utilized by computation module 202 and any compo-
nent therein. For example, such modules may include an
indexing module 218 configured to index the one or more
points in an index using the at least one long integer value
and/or a querying module configured to query the index
according to a user input.

Though such modules discussed above provide examples
of modules comprising computation module 202, computa-
tion module may include one or more other modules, such as,
but not limited to, one or more modules for converting latitude
and longitude values to Cartesian coordinates originating at
an origin point and/or performing any of the algorithms
described below.

For example, computation module 202 may be converted
to perform spatial conversion of a point or polygon from
latitude and longitude coordinates to three-dimensional Car-
tesian coordinates using, for example, the following equa-
tions:

Let 0 be the latitude, and let ¢ be the longitude. Then:

x=rcos 0 cos ¢
y=rcos O sin¢

z=rsin 0

The algorithm may constrain the values to points on the
surface of a sphere so that r=1 according to the following
equations:

x=cos 0 cos ¢
y=cos 0 sin ¢

z=sin 0

Furthermore, based on the above calculations/conversion,
computation module 202 may be configured to execute the
following algorithm (“Algorithm 1), which may determine
the location of a test point in relation to a great arc of a sphere
(e.g. the Earth):

Let points ]?: and ]?;, be the endpoints of the great arc B of
interest. Operations on ]?: and ]?: will be conducted in Car-
tesian (X, y, z) coordinates. Let point T, be the test point of
interest. Operations on T will be conducted in Cartesian (%, v,

7) coordinates. Let point G be the origin at Cartesian coordi-
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— — .
nates (X, y, 2)=(0, 0, 0) and let vector §:B2—B1. This defines
the line segment that is a chord through the sphere corre-
sponding to the great arc. Let vector A=T-0. This defines
the radius to the test point. Let vector C=AxB, which defines
a vector orthogonal (perpendicular) to A and B that together

with & and B form a complete alternate basis in which to
describe the locations of points in three-dimensional space. In

the special case for which ||C||=0, A and B are parallel; this

— —
indicates that By, B,, T, and O are all coplanar so that the test
point is coplanar with both the great arc and the origin. For
this to occur, the test point must also be beyond the endpoints
of'the great arc (except in the very special case where the great

— —
arc is poorly defined because B, and B, are at exactly opposite
points on the sphere).

To determine where T is in relation to the great arc defined
by ]?: and ]?;, computation module 202 may find the path

.
from B, to T along direction vectors X, §, and 6, which may
be represented with the equation:

- = -
T-B=aA+bB+cC

where a, b, and ¢ are unknowns. Computation module 202
may solve for these unknowns using standard linear-algebraic
techniques. The resulting values of a, b, and ¢ then tell com-

putation module 202 where the test point T is relative to the

great arc defined by ]?: and ]?;
The sign of a tells computation module 202 whether or not

T is on the same side of the sphere as the great arc defined by
]?: and ]?; Ifa>0, then T is on the same side of the sphere as
the great arc defined by ]?: and ]?; If a<0, then T is on the
opposite side of the sphere as the great arc defined by ]?: and
]?;. Further, the sign of b tells computation module 202 where

the test point T is relative to the endpoints of the great arc. For

O=bx=1, the point that is on the great circle of the great arc and
—

that is closest to T is between the great arc endpoints B, and

]?;; for b<0 or b>1 this great circle point is outside of the great
arc endpoints.
Further, the sign of ¢ tells computation module 202 on

which side of the great arc the test point T is located. For ¢=0,
the test point T is on the great circle that contains the great arc
ofinterest. For ¢>0, the test point T is on one side of this great

circle; for c<0 the test point T is on the other side of the great
circle.

Furthermore, computation module 202 may be configured
to execute the following algorithm (“Algorithm 2”), which
may determine the intersection of two great arcs:

. = - .
Let points A;C and A,, be defined as the endpoints of the

great arc A of interest. Operations on E and E will be
conducted in Cartesian (X, y, z) coordinates. Additionally, let

— —
points B; and B, be the endpoints of the great arc B of interest.

— —
Operations on B; and B, will be conducted in Cartesian (X, y,
7) coordinates.

To determine if A and B intersect, computation module 202
finds a radius out from the origin that intersects both the
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spherical chord between E and KZ and the spherical chord

— — . . L, = —
between B, and B,. To find this radius, let vector A=A,-A,,
which defines the line segment that is a chord through the
sphere corresponding to the great arc A.

Also, let vector §Z]§Z—§:. This defines the line segment
that is a chord through the sphere corresponding to the great

arc B. Thus, the coordinates of the intersection of A with the
radius when multiplied by a constant scaling factor ¢ will

equal the coordinates of the intersection of B with the radius.
If this scaling factor is non-negative (cz0), the great arcs
intersect; for a negative scaling factor (c¢<0) the great arcs are
on opposite sides of the sphere.

—

Furthermore, if computation module 202 take A; as the
—

point on A that intersects the common radius and B, as the

— —

point on B that intersects the common radius, then By=cA,.

— — . . — —

Thus, A, on A is located at some fraction a along A from A,,

s0 As=A,+aA. Likewise, B is some fraction b along B from

— — — . .
By, so B3:B1+§. The overall governing equation for Algo-
rithm 2 is then:

B bB=c(A,+ak)

which can be rewritten to

BicAy+dA-bE

where d=ac and b, ¢, and d are unknowns. Next, computation
module 202 solves for these unknowns using standard
linear-algebraic techniques and then compute a from
a=d/c. The great arcs A and B intersect for the case where
O=ax<l, -1=b=0, and c=0 Otherwise the great arcs A and B do
not intersect.

In all of the above aspects of Algorithm 2, there is an
example degenerate caseto consider. That is the case where X

and B are parallel. In this case, computation module 202 may
compute the inner product of the vectors from the origin to the

midpoints of X and B. If this inner product is 1 (within
round-off error), then great arcs A and B overlap in full or in
part; otherwise these great arcs are side-by-side or on oppo-
site sides of the sphere.

Furthermore, computation module 202 may be configured
to execute the following algorithm (“Algorithm 3”), which
may determine the angle tangential to the surface of a sphere
subtended by a great arc as viewed from a test point:

— —

Let points B; and B,, be the endpoints of the great arc B of
interest. Operations on ]?: and ]?: will be conducted in Car-
tesian (X, y, z) coordinates. Let point T, be the test point of
interest. Operations on T will be conducted in Cartesian (x,9,
7) coordinates. Let point G be the origin at Cartesian coordi-
nates (X, y, 2)=(0, 0, 0). The normal vector I\_I: of the plane P,

. . - . . = -
containing B,, T, and O is given by N;=B,xT. The normal
vector I\_I>2 of the plane P| containing ]?;, T,and G is given by

— —> — —
NZZBZXT. Furthermore, let €:N1xN2.
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The magnitude ofthe angle subtended by B as viewed from
T is then given by
1[ Il
NI

— —>
combined with the sign of N;-N,,. In other words, computation
module 202 may also be configured to determine whether an
angle is acute or obtuse when calculating the angle by com-

puting the dot product I\?II\_I; and analyzing the sign of the
angle. For example, where the dot product is positive, the
computation module 202 may determine that the angle is
acute, where the dot product is equal the angle is a right angle,
and where the dot product is negative the angle is obtuse.

Whether or not a point T is within a polygon defined by a
set of bounding great arcs B can be determined by computa-
tion module 202 by summing the angles given by this algo-
rithm over all of the bounding great arcs B.

Furthermore, computation module 202 may be configured
to execute the following algorithm (“Algorithm 4”), which
may determine whether a great arc crosses an area of the
spherical surface delimited by a minimum and maximum
latitude and by a minimum and maximum longitude (e.g. as
provided in a query, for example, by a user):

— —

Let points B; and B, be the endpoints of the great arc B of
interest with latitudes 0, and 6, and longitudes ¢, and ¢,. Let
S be an area of the spherical surface defined by minimum and
maximum latitudes 0,,,,, and ¢,, .. and by minimum and maxi-
mum longitudes ¢,,,;, and ¢,,,.,...

Computation module may be configured to determine the
following:

1t6,<0,,, and 6,<6,,.., then B does not cross S.

1t6,>0,,,.and 6,>0, . then B does not cross S.

£ 9,<9¢,,,, and ¢,<0,,,.., then B does not cross S.

If¢,>9,,,. and ¢,>¢, . . then B does not cross S.

Ifnone of these conditions are satisfied, computation mod-
ule 202 may execute Algorithm 1 to determine the locations
of'thecorners (0,,,,,sGmi)s (O iresPrecnc)s (O maresPmeac)s AN (0, 1
§,.5,,) relative to B. Further, computation module 202 may be
configured to determine that B crosses S if at least one corner
is on each side of B, otherwise B does not cross S.

Furthermore, computation module 202 may be configured
to execute the following algorithm (“Algorithm 5”), which
may determine whether one subject polygon overlaps
another:

Computation module 202 may execute Algorithm 3 to
determine if the any vertices of the first polygon are contained
within the bounding great arcs of the second polygon or if any
vertices of the second polygon are contained within the
bounding great arcs of the first polygon. If any vertex of one
polygon is contained within the bounding great arcs of the
other polygon, then the polygons overlap.

Otherwise, computation module may execute Algorithm 2
on all pairs of bounding great arcs in which one bounding
great arc is drawn from each polygon. If any intersections are
found, then the polygons overlap. Otherwise computation
module 202 may determine that the polygons do not overlap.

Furthermore, computation module 202 may be configured
to execute the following algorithm (“Algorithm 6”), which
may generate a set of areas of a spherical surface (e.g. the
surface of the Earth) delimited by a minimum and maximum
latitude and by a minimum and maximum longitude that
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cover a given polygon (e.g. as submitted in a query to geospa-
tial search engine 104 by a user, for example):

Let S be an area of the spherical surface defined by mini-
mum and maximum latitudes 6,,,,,, and 0,, ., and by minimum
and maximum longitudes ¢,,,, and ¢,,,.... If all vertices of the
polygon have latitudes between 8,,,,, and 8, .. and longitudes
between¢,,,,,and¢,, ., orif Algorithm 4 finds that any bound-
ing great arc of the polygon crosses this area S, then compu-
tation module 202 may repeat Algorithm 6 with the four new
areas generated by dividing both the latitude and longitude
ranges of S at their midpoints unless we’ve reached a maxi-
mum number of subdivision levels. If the computation mod-
ule has reached the maximum number of subdivision levels,
then record S as a part of the polygon.

Otherwise, computation module may use Algorithm 3 to
determine if the point given by the midpoint of the latitude
range for S and the midpoint of the longitude range for S is in
the given polygon. If this point is in the polygon, then com-
putation module 202 may record S as a part of the polygon.
Otherwise, the computation module 202 may not record S as
a part of the polygon.

Furthermore, computation module 202 may be configured
to execute the following algorithm (“Algorithm 7”), which
may generate a set of areas of the spherical surface that cover
a given polygon:

The computation module 202 may execute Algorithm 6 for
the area from Latitude 90 South to the Equator and from
Longitude 180 West to Longitude 90 West. Further, compu-
tation module 202 may execute Algorithm 6 for the area from
Latitude 90 South to the Equator and from Longitude 90 West
to the Prime Meridian (Longitude 0). Moreover, computation
module 202 may execute Algorithm 6 for the area from the
Equator to Longitude 90 North and from Longitude 180 West
to Longitude 90 West, may execute Algorithm 6 for the area
from the Equator to Longitude 90 North and from Longitude
90 West to the Prime Meridian (Longitude 0), for the area
from Latitude 90 South to the Equator and from the Prime
Meridian (Longitude 0) to Longitude 90 East, and for the area
from Latitude 90 South to the Equator and from Longitude 90
East to Longitude 180 East.

Furthermore, computation module 202 may execute Algo-
rithm 6 for the area from the Equator to Longitude 90 North
and from Prime Meridian (Longitude 0) to Longitude 90 East,
and/or for the area from the Equator to Longitude 90 North
and from Longitude 90 East to Longitude 180 East.

In addition, the computation module 202 may be config-
ured to gather the areas S that covered the polygon as deter-
mined by the above executions of Algorithm 6 and report the
identifiers of these areas, for example, to a user via computer
device 102. Computation module 202 may be configured to
use these identifiers for indexing the given polygon and con-
verting the polygon into values which can be used to search an
index. In the latter case or a search, computation module 202
may execute Algorithm 5 to filter the polygons returned from
the index to only those which actually overlap the polygon
given in the search query.

FIG. 3 illustrates an example method 300 for improved
geospatial searching based on three-dimensional Cartesian
coordinates according to aspects of the present disclosure. In
some aspects, method 300 may include obtaining one or more
search parameters of a search query from a user or a computer
device, searching for a document based on the search query,
converting one or more locational values into three-dimen-
sional Cartesian coordinates, and/or indexing one or more
numerical values that may correspond to one or more points
or areas of a surface (not shown). In addition, example
method may include computing one or more of Algorithms
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1-7, as defined in reference to FIG. 2, or any other algorithms
defined herein or known to those of skill in the art.

Furthermore, as illustrated in FIG. 3, alternatively or in
addition to methods mentioned above, method 300 may
include, at block 302, calculating endpoints of a segment,
wherein the endpoints are specified in Cartesian coordinates
and are located on a substantially spherical surface. Further-
more, method 300 may include, at block 304, defining a
boundary of a polygon according to the segment. In addition,
method 300 may include computing, at block 306, one or
more normals corresponding to one or more planes, wherein
each of the one or more planes contain a test point and a
boundary point associated with the boundary

Additionally, method 300 may include, at block 308,
obtaining a boundary sine value of an angle defined by an arc
subtended by the endpoints. Furthermore, at block 310,
method 300 may include summing each of a group of angle
values derived from the boundary sine value to obtain an
angle sum, wherein the group contains the boundary sine
value. Moreover, example method 300 may further include
determining, at block 312, whether the test point is inside the
polygon based on the angle sum.

In some examples, method 300 may further include one or
more of: modifying a geohash algorithm to produce at least
one long integer value associated with one or more points
located on the surface, indexing the one or more points in an
index using the at least one long integer value, querying the
index according to a user input, receiving a query from a
computer device or a user, and/or reporting a search query
result to a user or computer device.

FIG. 4 is a block diagram illustrating a machine in the
example form of a computer system 500 (e.g. computer
device 102 and/or geospatial search database 104 of FIG. 1),
within which a set or sequence of instructions for causing the
machine to perform any one of the methodologies discussed
herein may be executed, according to an example embodi-
ment. In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g. networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of either a server or a client
machine in server-client network environments, or it may act
as a peer machine in peer-to-peer (or distributed) network
environments. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a mobile telephone, a web appliance, a
network router, switch or bridge, or any machine capable of
executing instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

Example computer system 400 includes at least one pro-
cessor 402 (e.g. a central processing unit (CPU), a graphics
processing unit (GPU) or both, processor cores, compute
nodes, etc.), a main memory 404 and a static memory 404,
which communicate with each other via a link 408 (e.g. bus).
The computer system 400 may further include a video display
unit 410, an alphanumeric input device 412 (e.g. akeyboard),
and auser interface (UI) navigation device 414 (e.g. a mouse).
In one embodiment, the video display unit 410, input device
412 and UI navigation device 414 are incorporated into a
touch screen display. The computer system 400 may addi-
tionally include a storage device 414 (e.g. a drive unit), a
signal generation device 418 (e.g. a speaker), a network inter-
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10

face device 420, and one or more sensors (not shown), such as
a global positioning system (GPS) sensor, compass, acceler-
ometer, or other sensor.

The storage device 414 includes a machine-readable
medium 422 on which is stored one or more sets of data
structures and instructions 424 (e.g. software) embodying or
utilized by any one or more of the methodologies or functions
described herein. The instructions 424 may also reside, com-
pletely or at least partially, within the main memory 404,
static memory 404, and/or within the processor 402 during
execution thereof by the computer system 400, with the main
memory 404, static memory 404, and the processor 402 also
constituting machine-readable media.

While the machine-readable medium 422 is illustrated in
an example embodiment to be a single medium, the term
“machine-readable medium” may include a single medium or
multiple media (e.g. a centralized or distributed database,
and/or associated caches and servers) that store the one or
more instructions 424. The term “machine-readable
medium” shall also be taken to include any tangible medium
that is capable of storing, encoding or carrying instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure or that is capable of storing, encoding or carrying
data structures utilized by or associated with such instruc-
tions. The term “machine-readable medium” shall accord-
ingly be taken to include, but not be limited to, solid-state
memories, and optical and magnetic media. Specific
examples of machine-readable media include non-volatile
memory, including, by way of example, semiconductor
memory devices (e.g. Electrically Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM)) and flash memory devices;
magnetic disks such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-ROM
disks.

The instructions 424 may further be transmitted or received
over a communications network 426 using a transmission
medium via the network interface device 420 utilizing any
one of a number of well-known transfer protocols (e.g.
HTTP). Examples of communication networks include a
local area network (LLAN), a wide area network (WAN), the
Internet, mobile telephone networks, Plain Old Telephone
(POTS) networks, and wireless data networks (e.g. Wi-Fi, 3
G, and 4 G LTE/LTE-A or WiMAX networks). The term
“transmission medium” shall be taken to include any intan-
gible medium that is capable of storing, encoding, or carrying
instructions for execution by the machine, and includes digi-
tal or analog communications signals or other intangible
medium to facilitate communication of such software.

Examples, as described herein, may include, or may oper-
ate on, logic or a number of modules, modules, or mecha-
nisms. Modules are tangible entities capable of performing
specified operations and may be configured or arranged in a
certain manner. In an example, circuits may be arranged (e.g.
internally or with respect to external entities such as other
circuits) in a specified manner as a module. In an example, the
whole or part of one or more computer systems (e.g. a stan-
dalone, client or server computer system) or one or more
hardware processors may be configured by firmware or soft-
ware (e.g. instructions, an application portion, or an applica-
tion) as a module that operates to perform specified opera-
tions. In an example, the software may reside (1) on a non-
transitory machine-readable medium or (2) in a transmission
signal. In an example, the software, when executed by the
underlying hardware of the module, causes the hardware to
perform the specified operations.
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Accordingly, the terms “module” and “module” are under-
stood to encompass a tangible entity, be that an entity that is
physically constructed, specifically configured (e.g. hard-
wired), or temporarily (e.g. transitorily) configured (e.g. pro-
grammed) to operate in a specified manner or to perform part
or all of any operation described herein. Considering
examples in which modules are temporarily configured, one
instantiation of a module may not exist simultaneously with
another instantiation of the same or different module. For
example, where the modules comprise a general-purpose
hardware processor configured using software, the general-
purpose hardware processor may be configured as respective
different modules at different times. Accordingly, software
may configure a hardware processor, for example, to consti-
tute a particular module at one instance of time and to con-
stitute a different module at a different instance of time.

Additional examples of the presently described method,
system, and device embodiments include the following, non-
limiting configurations. Each of the following non-limiting
examples may stand on its own, or may be combined in any
permutation or combination with any one or more of the other
examples provided below or throughout the present disclo-
sure. The preceding description and the drawings sufficiently
illustrate specific embodiments to enable those skilled in the
art to practice them. Other embodiments may incorporate
structural, logical, electrical, process, and other changes. Por-
tions and features of some embodiments may be included in,
or substituted for, those of other embodiments.

Embodiments may be implemented in one or a combina-
tion of hardware, firmware and software. Embodiments may
also be implemented as instructions stored on a computer-
readable storage device, which may be read and executed by
at least one processor to perform the operations described
herein. A computer-readable storage device may include any
non-transitory mechanism for storing information in a form
readable by a machine (e.g., a computer). For example, a
computer-readable storage device may include read-only
memory (ROM), random-access memory (RAM), magnetic
disk storage media, optical storage media, flash-memory
devices, and other storage devices and media. In some
embodiments, the system may include one or more proces-
sors and may be configured with instructions stored on a
computer-readable storage device.

The Abstract is provided to comply with 37 C.F.R. Section
1.72(b) requiring an abstract that will allow the reader to
ascertain the nature and gist of the technical disclosure. It is
submitted with the understanding that it will not be used to
limit or interpret the scope or meaning of the claims. The
following claims are hereby incorporated into the detailed
description, with each claim standing on its own as a separate
embodiment.

What is claimed is:

1. An apparatus for geospatial indexing, comprising:

an endpoint calculating module configured to calculate

endpoints of a segment, wherein the endpoints are speci-
fied in Cartesian coordinates and are located on a sub-
stantially spherical surface;

aboundary defining module configured to define a bound-

ary of a polygon according to the segment;

anormal computing module configured to compute one or

more normals corresponding to one or more planes,
wherein each of the one or more planes contain a test
point and a boundary point associated with the bound-
ary;

a sine obtaining module configured to obtain a boundary

sine value of an angle defined by an arc subtended by the
endpoints;
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a summing module configured to sum each of a group of
angle values derived from the boundary sine value to
obtain an angle sum, wherein the group contains the
boundary sine value;

a location determining module configured to determine
whether the test point is inside the polygon based on the
angle sum;

an algorithm modifying module configured to modify a
geohash algorithm to produce at least one long integer
value associated with one or more points located on the
surface; and

an indexing module configured to index the one or more
points in an index using the at least one long integer
value.

2. The apparatus of claim 1, wherein the one or more points

include at least one of the test point and the endpoints.

3. The apparatus of claim 1, further comprising a querying
module configured to query the index according to a user
input.

4. The apparatus of claim 3, wherein the user input com-
prises a polygon.

5. The apparatus of claim 4, wherein the polygon com-
prises at least one of a circle, a rectangle, a square, and an
ellipse.

6. The apparatus of claim 5, wherein defining the boundary
of the polygon further comprises computing one or more
cross-products.

7. A method of geospatial indexing, comprising:

calculating endpoints of a segment, wherein the endpoints
are specified in Cartesian coordinates and are located on
a substantially spherical surface;

defining a boundary of a polygon according to the segment;

computing one or more normals corresponding to one or
more planes, wherein each of the one or more planes
contain a test point and a boundary point associated with
the boundary;

obtaining a boundary sine value of an angle defined by an
arc subtended by the endpoints;

summing each of a group of angle values derived from the
boundary sine value to obtain an angle sum, wherein the
group contains the boundary sine value;

determining whether the test point is inside the polygon
based on the angle sum:

modifying a geohash algorithm to produce at least one long
integer value associated with one or more points located
on the surface; and

indexing the one or more points in an index using the at
least one long integer value.

8. The method of claim 7, wherein the one or more points

include at least one of the test point and the endpoints.

9. The method of claim 7, further comprising querying the
index according to a user input.

10. The method of claim 9, wherein the user input com-
prises a polygon.

11. The method of claim 10, wherein the polygon com-
prises at least one of a circle, a rectangle, a square, and an
ellipse.

12. The method of claim 11, wherein defining the boundary
of the polygon further comprises computing one or more
cross-products.

13. At least one non-transitory machine readable medium
comprising a plurality of instructions that in response to being
executed on a computing device, cause the computing device
to:

calculate endpoints of a segment, wherein the endpoints
are specified in Cartesian coordinates and are located on
a substantially spherical surface;
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define a boundary of a polygon according to the segment;

compute one or more normals corresponding to one or

more planes, wherein each of the one or more planes
contain a test point and a boundary point associated with
the boundary;

obtain a boundary sine value of an angle defined by an arc

subtended by the endpoints;

sum each of a group of angle values derived from the

boundary sine value to obtain an angle sum, wherein the
group contains the boundary sine value; and

determine whether the test point is inside the polygon

based on the angle sum;

modify a geohash algorithm to produce at least one long

integer value associated with one or more points located
on the surface; and

index the one or more points in an index using the at least

one long integer value.

14. The at least one non-transitory machine readable
medium of claim 13, wherein the one or more points include
at least one of the test point and the endpoints.

15. The at least one non-transitory machine readable
medium of claim 13, further comprising a plurality of instruc-
tions that in response to being executed on the computing
device, further cause the computing device to query the index
according to a user input.

16. The at least one non-transitory machine readable
medium of claim 13, wherein the user input comprises a
polygon.

17. The at least one non-transitory machine readable
medium of claim 16, wherein the polygon comprises at least
one of a circle, a rectangle, a square, and an ellipse.
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